当有人向你请求你无法立即完成的事情时,你会怎么做? 如果你是人类,并且你被另一个人打扰,你唯一能说的就是:“现在不行,我很忙。 走开!”。 但是,如果你是一个内核模块,并且你被一个进程打扰,你还有另一种可能性。 你可以让进程进入睡眠状态,直到你可以为它服务。 毕竟,进程一直在被内核置于睡眠状态并唤醒(这就是多个进程看起来像在同一时间在单个 CPU 上运行的方式)。
此内核模块是这方面的一个例子。 该文件(名为/proc/sleep)一次只能被一个进程打开。 如果文件已被打开,则内核模块会调用wait_event_interruptible[1]。 此函数将任务的状态(任务是内核数据结构,用于保存有关进程及其所处系统调用的信息,如果有的话)更改为TASK_INTERRUPTIBLE,这意味着该任务在被唤醒之前不会运行,并将其添加到 WaitQ,即等待访问文件的任务队列。 然后,该函数调用调度器以上下文切换到另一个进程,即对 CPU 有些用处的进程。
当一个进程完成文件操作后,它会关闭文件,并module_close被调用。 该函数会唤醒队列中的所有进程(没有机制只唤醒其中一个)。 然后它返回,刚刚关闭文件的进程可以继续运行。 稍后,调度器决定该进程已运行足够时间,并将 CPU 控制权交给另一个进程。 最终,队列中的一个进程将由调度器赋予 CPU 控制权。 它从调用module_interruptible_sleep_on[2] 之后的位置开始。 然后它可以继续设置一个全局变量,以告知所有其他进程该文件仍处于打开状态,并继续执行。 当其他进程获得 CPU 时间片时,它们将看到该全局变量并返回睡眠状态。
因此,我们将使用 tail -f 在后台保持文件打开,同时尝试使用另一个进程访问它(同样在后台,这样我们就不需要切换到不同的 vt)。 一旦第一个后台进程被 kill %1 杀死,第二个进程就会被唤醒,能够访问该文件并最终终止。
为了让我们的生活更有趣,module_close并非只有 才能唤醒等待访问文件的进程。 信号,例如 Ctrl+c (SIGINT)也可以唤醒进程。 [3] 在这种情况下,我们希望立即返回-EINTR。 这很重要,这样用户就可以例如在进程接收文件之前终止它。
还有一点需要记住。 有时进程不想睡眠,它们要么想立即获得它们想要的东西,要么想被告知无法完成。 这样的进程在打开文件时使用O_NONBLOCK标志。 内核应该通过返回错误代码-EAGAIN来响应那些原本会阻塞的操作,例如在本例中打开文件。 程序 cat_noblock(在本章的源代码目录中可用)可用于打开文件,使用O_NONBLOCK.
hostname:~/lkmpg-examples/09-BlockingProcesses# insmod sleep.ko hostname:~/lkmpg-examples/09-BlockingProcesses# cat_noblock /proc/sleep Last input: hostname:~/lkmpg-examples/09-BlockingProcesses# tail -f /proc/sleep & Last input: Last input: Last input: Last input: Last input: Last input: Last input: tail: /proc/sleep: file truncated [1] 6540 hostname:~/lkmpg-examples/09-BlockingProcesses# cat_noblock /proc/sleep Open would block hostname:~/lkmpg-examples/09-BlockingProcesses# kill %1 [1]+ Terminated tail -f /proc/sleep hostname:~/lkmpg-examples/09-BlockingProcesses# cat_noblock /proc/sleep Last input: hostname:~/lkmpg-examples/09-BlockingProcesses# |
示例 9-1. sleep.c
/* * sleep.c - create a /proc file, and if several processes try to open it at * the same time, put all but one to sleep */ #include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module */ #include <linux/proc_fs.h> /* Necessary because we use proc fs */ #include <linux/sched.h> /* For putting processes to sleep and waking them up */ #include <asm/uaccess.h> /* for get_user and put_user */ /* * The module's file functions */ /* * Here we keep the last message received, to prove that we can process our * input */ #define MESSAGE_LENGTH 80 static char Message[MESSAGE_LENGTH]; static struct proc_dir_entry *Our_Proc_File; #define PROC_ENTRY_FILENAME "sleep" /* * Since we use the file operations struct, we can't use the special proc * output provisions - we have to use a standard read function, which is this * function */ static ssize_t module_output(struct file *file, /* see include/linux/fs.h */ char *buf, /* The buffer to put data to (in the user segment) */ size_t len, /* The length of the buffer */ loff_t * offset) { static int finished = 0; int i; char message[MESSAGE_LENGTH + 30]; /* * Return 0 to signify end of file - that we have nothing * more to say at this point. */ if (finished) { finished = 0; return 0; } /* * If you don't understand this by now, you're hopeless as a kernel * programmer. */ sprintf(message, "Last input:%s\n", Message); for (i = 0; i < len && message[i]; i++) put_user(message[i], buf + i); finished = 1; return i; /* Return the number of bytes "read" */ } /* * This function receives input from the user when the user writes to the /proc * file. */ static ssize_t module_input(struct file *file, /* The file itself */ const char *buf, /* The buffer with input */ size_t length, /* The buffer's length */ loff_t * offset) { /* offset to file - ignore */ int i; /* * Put the input into Message, where module_output will later be * able to use it */ for (i = 0; i < MESSAGE_LENGTH - 1 && i < length; i++) get_user(Message[i], buf + i); /* * we want a standard, zero terminated string */ Message[i] = '\0'; /* * We need to return the number of input characters used */ return i; } /* * 1 if the file is currently open by somebody */ int Already_Open = 0; /* * Queue of processes who want our file */ DECLARE_WAIT_QUEUE_HEAD(WaitQ); /* * Called when the /proc file is opened */ static int module_open(struct inode *inode, struct file *file) { /* * If the file's flags include O_NONBLOCK, it means the process doesn't * want to wait for the file. In this case, if the file is already * open, we should fail with -EAGAIN, meaning "you'll have to try * again", instead of blocking a process which would rather stay awake. */ if ((file->f_flags & O_NONBLOCK) && Already_Open) return -EAGAIN; /* * This is the correct place for try_module_get(THIS_MODULE) because * if a process is in the loop, which is within the kernel module, * the kernel module must not be removed. */ try_module_get(THIS_MODULE); /* * If the file is already open, wait until it isn't */ while (Already_Open) { int i, is_sig = 0; /* * This function puts the current process, including any system * calls, such as us, to sleep. Execution will be resumed right * after the function call, either because somebody called * wake_up(&WaitQ) (only module_close does that, when the file * is closed) or when a signal, such as Ctrl-C, is sent * to the process */ wait_event_interruptible(WaitQ, !Already_Open); /* * If we woke up because we got a signal we're not blocking, * return -EINTR (fail the system call). This allows processes * to be killed or stopped. */ /* * Emmanuel Papirakis: * * This is a little update to work with 2.2.*. Signals now are contained in * two words (64 bits) and are stored in a structure that contains an array of * two unsigned longs. We now have to make 2 checks in our if. * * Ori Pomerantz: * * Nobody promised me they'll never use more than 64 bits, or that this book * won't be used for a version of Linux with a word size of 16 bits. This code * would work in any case. */ for (i = 0; i < _NSIG_WORDS && !is_sig; i++) is_sig = current->pending.signal.sig[i] & ~current-> blocked.sig[i]; if (is_sig) { /* * It's important to put module_put(THIS_MODULE) here, * because for processes where the open is interrupted * there will never be a corresponding close. If we * don't decrement the usage count here, we will be * left with a positive usage count which we'll have no * way to bring down to zero, giving us an immortal * module, which can only be killed by rebooting * the machine. */ module_put(THIS_MODULE); return -EINTR; } } /* * If we got here, Already_Open must be zero */ /* * Open the file */ Already_Open = 1; return 0; /* Allow the access */ } /* * Called when the /proc file is closed */ int module_close(struct inode *inode, struct file *file) { /* * Set Already_Open to zero, so one of the processes in the WaitQ will * be able to set Already_Open back to one and to open the file. All * the other processes will be called when Already_Open is back to one, * so they'll go back to sleep. */ Already_Open = 0; /* * Wake up all the processes in WaitQ, so if anybody is waiting for the * file, they can have it. */ wake_up(&WaitQ); module_put(THIS_MODULE); return 0; /* success */ } /* * This function decides whether to allow an operation (return zero) or not * allow it (return a non-zero which indicates why it is not allowed). * * The operation can be one of the following values: * 0 - Execute (run the "file" - meaningless in our case) * 2 - Write (input to the kernel module) * 4 - Read (output from the kernel module) * * This is the real function that checks file permissions. The permissions * returned by ls -l are for reference only, and can be overridden here. */ static int module_permission(struct inode *inode, int op, struct nameidata *nd) { /* * We allow everybody to read from our module, but only root (uid 0) * may write to it */ if (op == 4 || (op == 2 && current->euid == 0)) return 0; /* * If it's anything else, access is denied */ return -EACCES; } /* * Structures to register as the /proc file, with pointers to all the relevant * functions. */ /* * File operations for our proc file. This is where we place pointers to all * the functions called when somebody tries to do something to our file. NULL * means we don't want to deal with something. */ static struct file_operations File_Ops_4_Our_Proc_File = { .read = module_output, /* "read" from the file */ .write = module_input, /* "write" to the file */ .open = module_open, /* called when the /proc file is opened */ .release = module_close, /* called when it's closed */ }; /* * Inode operations for our proc file. We need it so we'll have somewhere to * specify the file operations structure we want to use, and the function we * use for permissions. It's also possible to specify functions to be called * for anything else which could be done to an inode (although we don't bother, * we just put NULL). */ static struct inode_operations Inode_Ops_4_Our_Proc_File = { .permission = module_permission, /* check for permissions */ }; /* * Module initialization and cleanup */ /* * Initialize the module - register the proc file */ int init_module() { Our_Proc_File = create_proc_entry(PROC_ENTRY_FILENAME, 0644, NULL); if (Our_Proc_File == NULL) { remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root); printk(KERN_ALERT "Error: Could not initialize /proc/test\n"); return -ENOMEM; } Our_Proc_File->owner = THIS_MODULE; Our_Proc_File->proc_iops = &Inode_Ops_4_Our_Proc_File; Our_Proc_File->proc_fops = &File_Ops_4_Our_Proc_File; Our_Proc_File->mode = S_IFREG | S_IRUGO | S_IWUSR; Our_Proc_File->uid = 0; Our_Proc_File->gid = 0; Our_Proc_File->size = 80; printk(KERN_INFO "/proc/test created\n"); return 0; } /* * Cleanup - unregister our file from /proc. This could get dangerous if * there are still processes waiting in WaitQ, because they are inside our * open function, which will get unloaded. I'll explain how to avoid removal * of a kernel module in such a case in chapter 10. */ void cleanup_module() { remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root); printk(KERN_INFO "/proc/test removed\n"); } |
示例 9-2. cat_noblock.c
/* cat_noblock.c - open a file and display its contents, but exit rather than * wait for input */ /* Copyright (C) 1998 by Ori Pomerantz */ #include <stdio.h> /* standard I/O */ #include <fcntl.h> /* for open */ #include <unistd.h> /* for read */ #include <stdlib.h> /* for exit */ #include <errno.h> /* for errno */ #define MAX_BYTES 1024*4 main(int argc, char *argv[]) { int fd; /* The file descriptor for the file to read */ size_t bytes; /* The number of bytes read */ char buffer[MAX_BYTES]; /* The buffer for the bytes */ /* Usage */ if (argc != 2) { printf("Usage: %s <filename>\n", argv[0]); puts("Reads the content of a file, but doesn't wait for input"); exit(-1); } /* Open the file for reading in non blocking mode */ fd = open(argv[1], O_RDONLY | O_NONBLOCK); /* If open failed */ if (fd == -1) { if (errno = EAGAIN) puts("Open would block"); else puts("Open failed"); exit(-1); } /* Read the file and output its contents */ do { int i; /* Read characters from the file */ bytes = read(fd, buffer, MAX_BYTES); /* If there's an error, report it and die */ if (bytes == -1) { if (errno = EAGAIN) puts("Normally I'd block, but you told me not to"); else puts("Another read error"); exit(-1); } /* Print the characters */ if (bytes > 0) { for(i=0; i<bytes; i++) putchar(buffer[i]); } /* While there are no errors and the file isn't over */ } while (bytes > 0); } |
[1] | 保持文件打开的最简单方法是使用 tail -f 打开它。 |
[2] | 这意味着进程仍然处于内核模式 —— 就进程而言,它发出了open系统调用,并且系统调用尚未返回。 进程不知道在它发出调用和返回的时刻之间的大部分时间里,其他人使用了 CPU。 |
[3] | 这是因为我们使用了module_interruptible_sleep_onwait_event_interruptible。 我们可以使用module_sleep_on |