当有人向你请求你无法立即完成的事情时,你会怎么做? 如果你是人类,并且你被另一个人打扰,你唯一能说的就是:“现在不行,我很忙。 走开!”。 但是,如果你是一个内核模块,并且你被一个进程打扰,你还有另一种可能性。 你可以让进程进入睡眠状态,直到你可以为它服务。 毕竟,进程一直在被内核置于睡眠状态并唤醒(这就是多个进程看起来像在同一时间在单个 CPU 上运行的方式)。
此内核模块是这方面的一个例子。 该文件(名为/proc/sleep)一次只能被一个进程打开。 如果文件已被打开,则内核模块会调用wait_event_interruptible[1]。 此函数将任务的状态(任务是内核数据结构,用于保存有关进程及其所处系统调用的信息,如果有的话)更改为TASK_INTERRUPTIBLE,这意味着该任务在被唤醒之前不会运行,并将其添加到 WaitQ,即等待访问文件的任务队列。 然后,该函数调用调度器以上下文切换到另一个进程,即对 CPU 有些用处的进程。
当一个进程完成文件操作后,它会关闭文件,并module_close被调用。 该函数会唤醒队列中的所有进程(没有机制只唤醒其中一个)。 然后它返回,刚刚关闭文件的进程可以继续运行。 稍后,调度器决定该进程已运行足够时间,并将 CPU 控制权交给另一个进程。 最终,队列中的一个进程将由调度器赋予 CPU 控制权。 它从调用module_interruptible_sleep_on[2] 之后的位置开始。 然后它可以继续设置一个全局变量,以告知所有其他进程该文件仍处于打开状态,并继续执行。 当其他进程获得 CPU 时间片时,它们将看到该全局变量并返回睡眠状态。
因此,我们将使用 tail -f 在后台保持文件打开,同时尝试使用另一个进程访问它(同样在后台,这样我们就不需要切换到不同的 vt)。 一旦第一个后台进程被 kill %1 杀死,第二个进程就会被唤醒,能够访问该文件并最终终止。
为了让我们的生活更有趣,module_close并非只有 才能唤醒等待访问文件的进程。 信号,例如 Ctrl+c (SIGINT)也可以唤醒进程。 [3] 在这种情况下,我们希望立即返回-EINTR。 这很重要,这样用户就可以例如在进程接收文件之前终止它。
还有一点需要记住。 有时进程不想睡眠,它们要么想立即获得它们想要的东西,要么想被告知无法完成。 这样的进程在打开文件时使用O_NONBLOCK标志。 内核应该通过返回错误代码-EAGAIN来响应那些原本会阻塞的操作,例如在本例中打开文件。 程序 cat_noblock(在本章的源代码目录中可用)可用于打开文件,使用O_NONBLOCK.
hostname:~/lkmpg-examples/09-BlockingProcesses# insmod sleep.ko hostname:~/lkmpg-examples/09-BlockingProcesses# cat_noblock /proc/sleep Last input: hostname:~/lkmpg-examples/09-BlockingProcesses# tail -f /proc/sleep & Last input: Last input: Last input: Last input: Last input: Last input: Last input: tail: /proc/sleep: file truncated [1] 6540 hostname:~/lkmpg-examples/09-BlockingProcesses# cat_noblock /proc/sleep Open would block hostname:~/lkmpg-examples/09-BlockingProcesses# kill %1 [1]+ Terminated tail -f /proc/sleep hostname:~/lkmpg-examples/09-BlockingProcesses# cat_noblock /proc/sleep Last input: hostname:~/lkmpg-examples/09-BlockingProcesses# |
示例 9-1. sleep.c
/*
* sleep.c - create a /proc file, and if several processes try to open it at
* the same time, put all but one to sleep
*/
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */
#include <linux/proc_fs.h> /* Necessary because we use proc fs */
#include <linux/sched.h> /* For putting processes to sleep and
waking them up */
#include <asm/uaccess.h> /* for get_user and put_user */
/*
* The module's file functions
*/
/*
* Here we keep the last message received, to prove that we can process our
* input
*/
#define MESSAGE_LENGTH 80
static char Message[MESSAGE_LENGTH];
static struct proc_dir_entry *Our_Proc_File;
#define PROC_ENTRY_FILENAME "sleep"
/*
* Since we use the file operations struct, we can't use the special proc
* output provisions - we have to use a standard read function, which is this
* function
*/
static ssize_t module_output(struct file *file, /* see include/linux/fs.h */
char *buf, /* The buffer to put data to
(in the user segment) */
size_t len, /* The length of the buffer */
loff_t * offset)
{
static int finished = 0;
int i;
char message[MESSAGE_LENGTH + 30];
/*
* Return 0 to signify end of file - that we have nothing
* more to say at this point.
*/
if (finished) {
finished = 0;
return 0;
}
/*
* If you don't understand this by now, you're hopeless as a kernel
* programmer.
*/
sprintf(message, "Last input:%s\n", Message);
for (i = 0; i < len && message[i]; i++)
put_user(message[i], buf + i);
finished = 1;
return i; /* Return the number of bytes "read" */
}
/*
* This function receives input from the user when the user writes to the /proc
* file.
*/
static ssize_t module_input(struct file *file, /* The file itself */
const char *buf, /* The buffer with input */
size_t length, /* The buffer's length */
loff_t * offset)
{ /* offset to file - ignore */
int i;
/*
* Put the input into Message, where module_output will later be
* able to use it
*/
for (i = 0; i < MESSAGE_LENGTH - 1 && i < length; i++)
get_user(Message[i], buf + i);
/*
* we want a standard, zero terminated string
*/
Message[i] = '\0';
/*
* We need to return the number of input characters used
*/
return i;
}
/*
* 1 if the file is currently open by somebody
*/
int Already_Open = 0;
/*
* Queue of processes who want our file
*/
DECLARE_WAIT_QUEUE_HEAD(WaitQ);
/*
* Called when the /proc file is opened
*/
static int module_open(struct inode *inode, struct file *file)
{
/*
* If the file's flags include O_NONBLOCK, it means the process doesn't
* want to wait for the file. In this case, if the file is already
* open, we should fail with -EAGAIN, meaning "you'll have to try
* again", instead of blocking a process which would rather stay awake.
*/
if ((file->f_flags & O_NONBLOCK) && Already_Open)
return -EAGAIN;
/*
* This is the correct place for try_module_get(THIS_MODULE) because
* if a process is in the loop, which is within the kernel module,
* the kernel module must not be removed.
*/
try_module_get(THIS_MODULE);
/*
* If the file is already open, wait until it isn't
*/
while (Already_Open) {
int i, is_sig = 0;
/*
* This function puts the current process, including any system
* calls, such as us, to sleep. Execution will be resumed right
* after the function call, either because somebody called
* wake_up(&WaitQ) (only module_close does that, when the file
* is closed) or when a signal, such as Ctrl-C, is sent
* to the process
*/
wait_event_interruptible(WaitQ, !Already_Open);
/*
* If we woke up because we got a signal we're not blocking,
* return -EINTR (fail the system call). This allows processes
* to be killed or stopped.
*/
/*
* Emmanuel Papirakis:
*
* This is a little update to work with 2.2.*. Signals now are contained in
* two words (64 bits) and are stored in a structure that contains an array of
* two unsigned longs. We now have to make 2 checks in our if.
*
* Ori Pomerantz:
*
* Nobody promised me they'll never use more than 64 bits, or that this book
* won't be used for a version of Linux with a word size of 16 bits. This code
* would work in any case.
*/
for (i = 0; i < _NSIG_WORDS && !is_sig; i++)
is_sig =
current->pending.signal.sig[i] & ~current->
blocked.sig[i];
if (is_sig) {
/*
* It's important to put module_put(THIS_MODULE) here,
* because for processes where the open is interrupted
* there will never be a corresponding close. If we
* don't decrement the usage count here, we will be
* left with a positive usage count which we'll have no
* way to bring down to zero, giving us an immortal
* module, which can only be killed by rebooting
* the machine.
*/
module_put(THIS_MODULE);
return -EINTR;
}
}
/*
* If we got here, Already_Open must be zero
*/
/*
* Open the file
*/
Already_Open = 1;
return 0; /* Allow the access */
}
/*
* Called when the /proc file is closed
*/
int module_close(struct inode *inode, struct file *file)
{
/*
* Set Already_Open to zero, so one of the processes in the WaitQ will
* be able to set Already_Open back to one and to open the file. All
* the other processes will be called when Already_Open is back to one,
* so they'll go back to sleep.
*/
Already_Open = 0;
/*
* Wake up all the processes in WaitQ, so if anybody is waiting for the
* file, they can have it.
*/
wake_up(&WaitQ);
module_put(THIS_MODULE);
return 0; /* success */
}
/*
* This function decides whether to allow an operation (return zero) or not
* allow it (return a non-zero which indicates why it is not allowed).
*
* The operation can be one of the following values:
* 0 - Execute (run the "file" - meaningless in our case)
* 2 - Write (input to the kernel module)
* 4 - Read (output from the kernel module)
*
* This is the real function that checks file permissions. The permissions
* returned by ls -l are for reference only, and can be overridden here.
*/
static int module_permission(struct inode *inode, int op, struct nameidata *nd)
{
/*
* We allow everybody to read from our module, but only root (uid 0)
* may write to it
*/
if (op == 4 || (op == 2 && current->euid == 0))
return 0;
/*
* If it's anything else, access is denied
*/
return -EACCES;
}
/*
* Structures to register as the /proc file, with pointers to all the relevant
* functions.
*/
/*
* File operations for our proc file. This is where we place pointers to all
* the functions called when somebody tries to do something to our file. NULL
* means we don't want to deal with something.
*/
static struct file_operations File_Ops_4_Our_Proc_File = {
.read = module_output, /* "read" from the file */
.write = module_input, /* "write" to the file */
.open = module_open, /* called when the /proc file is opened */
.release = module_close, /* called when it's closed */
};
/*
* Inode operations for our proc file. We need it so we'll have somewhere to
* specify the file operations structure we want to use, and the function we
* use for permissions. It's also possible to specify functions to be called
* for anything else which could be done to an inode (although we don't bother,
* we just put NULL).
*/
static struct inode_operations Inode_Ops_4_Our_Proc_File = {
.permission = module_permission, /* check for permissions */
};
/*
* Module initialization and cleanup
*/
/*
* Initialize the module - register the proc file
*/
int init_module()
{
Our_Proc_File = create_proc_entry(PROC_ENTRY_FILENAME, 0644, NULL);
if (Our_Proc_File == NULL) {
remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root);
printk(KERN_ALERT "Error: Could not initialize /proc/test\n");
return -ENOMEM;
}
Our_Proc_File->owner = THIS_MODULE;
Our_Proc_File->proc_iops = &Inode_Ops_4_Our_Proc_File;
Our_Proc_File->proc_fops = &File_Ops_4_Our_Proc_File;
Our_Proc_File->mode = S_IFREG | S_IRUGO | S_IWUSR;
Our_Proc_File->uid = 0;
Our_Proc_File->gid = 0;
Our_Proc_File->size = 80;
printk(KERN_INFO "/proc/test created\n");
return 0;
}
/*
* Cleanup - unregister our file from /proc. This could get dangerous if
* there are still processes waiting in WaitQ, because they are inside our
* open function, which will get unloaded. I'll explain how to avoid removal
* of a kernel module in such a case in chapter 10.
*/
void cleanup_module()
{
remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root);
printk(KERN_INFO "/proc/test removed\n");
} |
示例 9-2. cat_noblock.c
/* cat_noblock.c - open a file and display its contents, but exit rather than
* wait for input */
/* Copyright (C) 1998 by Ori Pomerantz */
#include <stdio.h> /* standard I/O */
#include <fcntl.h> /* for open */
#include <unistd.h> /* for read */
#include <stdlib.h> /* for exit */
#include <errno.h> /* for errno */
#define MAX_BYTES 1024*4
main(int argc, char *argv[])
{
int fd; /* The file descriptor for the file to read */
size_t bytes; /* The number of bytes read */
char buffer[MAX_BYTES]; /* The buffer for the bytes */
/* Usage */
if (argc != 2) {
printf("Usage: %s <filename>\n", argv[0]);
puts("Reads the content of a file, but doesn't wait for input");
exit(-1);
}
/* Open the file for reading in non blocking mode */
fd = open(argv[1], O_RDONLY | O_NONBLOCK);
/* If open failed */
if (fd == -1) {
if (errno = EAGAIN)
puts("Open would block");
else
puts("Open failed");
exit(-1);
}
/* Read the file and output its contents */
do {
int i;
/* Read characters from the file */
bytes = read(fd, buffer, MAX_BYTES);
/* If there's an error, report it and die */
if (bytes == -1) {
if (errno = EAGAIN)
puts("Normally I'd block, but you told me not to");
else
puts("Another read error");
exit(-1);
}
/* Print the characters */
if (bytes > 0) {
for(i=0; i<bytes; i++)
putchar(buffer[i]);
}
/* While there are no errors and the file isn't over */
} while (bytes > 0);
} |
| [1] | 保持文件打开的最简单方法是使用 tail -f 打开它。 |
| [2] | 这意味着进程仍然处于内核模式 —— 就进程而言,它发出了open系统调用,并且系统调用尚未返回。 进程不知道在它发出调用和返回的时刻之间的大部分时间里,其他人使用了 CPU。 |
| [3] | 这是因为我们使用了module_interruptible_sleep_onwait_event_interruptible。 我们可以使用module_sleep_on |