6.1. 使用 /proc 进行输入

到目前为止,我们有两种方法可以从内核模块生成输出:我们可以注册一个设备驱动程序并使用 mknod 创建一个设备文件,或者我们可以创建一个/proc文件。这允许内核模块告诉我们任何它想说的内容。唯一的问题是我们无法与它对话。我们将向内核模块发送输入的第一种方式是通过写回到/proc文件。

因为 proc 文件系统主要是为了允许内核向进程报告其状态而编写的,所以没有针对输入的特殊规定。因此,struct proc_dir_entry不包含指向输入函数的指针,就像它包含指向输出函数的指针一样。相反,要写入一个/proc文件,我们需要使用标准的 文件系统机制。

在 Linux 中,有一个标准的文件系统注册机制。由于每个文件系统都必须有自己的函数来处理 inode 和文件操作[1],因此有一个特殊的结构来保存指向所有这些函数的指针,struct inode_operations,它包含一个指向struct file_operations。在 /proc 中,每当我们注册一个新文件时,我们被允许指定哪个struct inode_operations将被用于访问它。这就是我们使用的机制,一个struct inode_operations它包含一个指向一个struct file_operations它包含指向我们的module_inputmodule_output函数。

重要的是要注意,在内核中,读和写的标准角色是相反的。读取函数用于输出,而写入函数用于输入。原因是读取和写入指的是用户的角度 --- 如果一个进程从内核读取内容,那么内核需要输出它;如果一个进程向内核写入内容,那么内核会将其作为输入接收。

另一个有趣的方面是module_permission函数。每当一个进程尝试对/proc文件执行某些操作时,都会调用此函数,它可以决定是否允许访问。目前,它仅基于操作和当前用户的 uid(在current中可用,它是一个指向包含当前正在运行的进程信息的结构的指针),但它可以基于我们想要的任何内容,例如其他进程对同一文件执行的操作、一天中的时间或我们收到的最后一个输入。

原因是put_userget_user是因为 Linux 内存(在 Intel 架构下,在其他处理器下可能有所不同)是分段的。这意味着指针本身并不引用内存中的唯一位置,而只是内存段中的一个位置,您需要知道它是哪个内存段才能使用它。内核有一个内存段,每个进程也都有一个内存段。

进程唯一可访问的内存段是它自己的,因此在编写作为进程运行的常规程序时,无需担心段的问题。当您编写内核模块时,通常您希望访问内核内存段,这由系统自动处理。但是,当需要在当前运行的进程和内核之间传递内存缓冲区的内容时,内核函数接收一个指向进程段中内存缓冲区的指针。这些put_userget_user宏允许您访问该内存。

示例 6-1. procfs.c

/*  procfs.c -  create a "file" in /proc, which allows both input and output.
 */

#include <linux/kernel.h>   /* We're doing kernel work */
#include <linux/module.h>   /* Specifically, a module */

/* Necessary because we use proc fs */
#include <linux/proc_fs.h>


/* In 2.2.3 /usr/include/linux/version.h includes a 
 * macro for this, but 2.0.35 doesn't - so I add it 
 * here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif



#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h>  /* for get_user and put_user */
#endif

/* The module's file functions ********************** */


/* Here we keep the last message received, to prove 
 * that we can process our input */
#define MESSAGE_LENGTH 80
static char Message[MESSAGE_LENGTH];


/* Since we use the file operations struct, we can't 
 * use the special proc output provisions - we have to 
 * use a standard read function, which is this function */
#if LINUX_VERSION_CODE &gt;= KERNEL_VERSION(2,2,0)
static ssize_t module_output(
    struct file *file,   /* The file read */
    char *buf, /* The buffer to put data to (in the
                * user segment) */
    size_t len,  /* The length of the buffer */
    loff_t *offset) /* Offset in the file - ignore */
#else
static int module_output(
    struct inode *inode, /* The inode read */
    struct file *file,   /* The file read */
    char *buf, /* The buffer to put data to (in the
                * user segment) */
    int len)  /* The length of the buffer */
#endif
{
  static int finished = 0;
  int i;
  char message[MESSAGE_LENGTH+30];

  /* We return 0 to indicate end of file, that we have 
   * no more information. Otherwise, processes will 
   * continue to read from us in an endless loop. */
  if (finished) {
    finished = 0;
    return 0;
  }

  /* We use put_user to copy the string from the kernel's 
   * memory segment to the memory segment of the process 
   * that called us. get_user, BTW, is
   * used for the reverse. */
  sprintf(message, "Last input:%s", Message);
  for(i=0; i&lt;len && message[i]; i++) 
    put_user(message[i], buf+i);


  /* Notice, we assume here that the size of the message 
   * is below len, or it will be received cut. In a real 
   * life situation, if the size of the message is less 
   * than len then we'd return len and on the second call 
   * start filling the buffer with the len+1'th byte of 
   * the message. */
  finished = 1; 

  return i;  /* Return the number of bytes "read" */
}


/* This function receives input from the user when the 
 * user writes to the /proc file. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize_t module_input(
    struct file *file,   /* The file itself */
    const char *buf,     /* The buffer with input */
    size_t length,       /* The buffer's length */
    loff_t *offset)      /* offset to file - ignore */
#else
static int module_input(
    struct inode *inode, /* The file's inode */
    struct file *file,   /* The file itself */
    const char *buf,     /* The buffer with the input */
    int length)          /* The buffer's length */
#endif
{
  int i;

  /* Put the input into Message, where module_output 
   * will later be able to use it */
  for(i=0; i<MESSAGE_LENGTH-1 && i<length; i++)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
    get_user(Message[i], buf+i);
  /* In version 2.2 the semantics of get_user changed, 
   * it not longer returns a character, but expects a 
   * variable to fill up as its first argument and a 
   * user segment pointer to fill it from as the its 
   * second.
   *
   * The reason for this change is that the version 2.2 
   * get_user can also read an short or an int. The way 
   * it knows the type of the variable it should read 
   * is by using sizeof, and for that it needs the 
   * variable itself.
   */ 
#else 
    Message[i] = get_user(buf+i);
#endif
  Message[i] = '\0';  /* we want a standard, zero 
                       * terminated string */
  
  /* We need to return the number of input characters 
   * used */
  return i;
}



/* This function decides whether to allow an operation 
 * (return zero) or not allow it (return a non-zero 
 * which indicates why it is not allowed).
 *
 * The operation can be one of the following values:
 * 0 - Execute (run the "file" - meaningless in our case)
 * 2 - Write (input to the kernel module)
 * 4 - Read (output from the kernel module)
 *
 * This is the real function that checks file 
 * permissions. The permissions returned by ls -l are 
 * for referece only, and can be overridden here. 
 */
static int module_permission(struct inode *inode, int op)
{
  /* We allow everybody to read from our module, but 
   * only root (uid 0) may write to it */ 
  if (op == 4 || (op == 2 && current->euid == 0))
    return 0; 

  /* If it's anything else, access is denied */
  return -EACCES;
}




/* The file is opened - we don't really care about 
 * that, but it does mean we need to increment the 
 * module's reference count. */
int module_open(struct inode *inode, struct file *file)
{
  MOD_INC_USE_COUNT;
 
  return 0;
}


/* The file is closed - again, interesting only because 
 * of the reference count. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
int module_close(struct inode *inode, struct file *file)
#else
void module_close(struct inode *inode, struct file *file)
#endif
{
  MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  return 0;  /* success */
#endif
}


/* Structures to register as the /proc file, with 
 * pointers to all the relevant functions. ********** */



/* File operations for our proc file. This is where we 
 * place pointers to all the functions called when 
 * somebody tries to do something to our file. NULL 
 * means we don't want to deal with something. */
static struct file_operations File_Ops_4_Our_Proc_File =
  {
    NULL,  /* lseek */
    module_output,  /* "read" from the file */
    module_input,   /* "write" to the file */
    NULL,  /* readdir */
    NULL,  /* select */
    NULL,  /* ioctl */
    NULL,  /* mmap */
    module_open,    /* Somebody opened the file */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
    NULL,   /* flush, added here in version 2.2 */
#endif
    module_close,    /* Somebody closed the file */
    /* etc. etc. etc. (they are all given in 
     * /usr/include/linux/fs.h). Since we don't put 
     * anything here, the system will keep the default
     * data, which in Unix is zeros (NULLs when taken as 
     * pointers). */
  };



/* Inode operations for our proc file. We need it so 
 * we'll have some place to specify the file operations 
 * structure we want to use, and the function we use for 
 * permissions. It's also possible to specify functions 
 * to be called for anything else which could be done to 
 * an inode (although we don't bother, we just put 
 * NULL). */
static struct inode_operations Inode_Ops_4_Our_Proc_File =
  {
    &File_Ops_4_Our_Proc_File,
    NULL, /* create */
    NULL, /* lookup */
    NULL, /* link */
    NULL, /* unlink */
    NULL, /* symlink */
    NULL, /* mkdir */
    NULL, /* rmdir */
    NULL, /* mknod */
    NULL, /* rename */
    NULL, /* readlink */
    NULL, /* follow_link */
    NULL, /* readpage */
    NULL, /* writepage */
    NULL, /* bmap */
    NULL, /* truncate */
    module_permission /* check for permissions */
  };


/* Directory entry */
static struct proc_dir_entry Our_Proc_File = 
  {
    0, /* Inode number - ignore, it will be filled by 
        * proc_register[_dynamic] */
    7, /* Length of the file name */
    "rw_test", /* The file name */
    S_IFREG | S_IRUGO | S_IWUSR, 
    /* File mode - this is a regular file which 
     * can be read by its owner, its group, and everybody
     * else. Also, its owner can write to it.
     *
     * Actually, this field is just for reference, it's
     * module_permission that does the actual check. It 
     * could use this field, but in our implementation it
     * doesn't, for simplicity. */
    1,  /* Number of links (directories where the 
         * file is referenced) */
    0, 0,  /* The uid and gid for the file - 
            * we give it to root */
    80, /* The size of the file reported by ls. */
    &Inode_Ops_4_Our_Proc_File, 
    /* A pointer to the inode structure for
     * the file, if we need it. In our case we
     * do, because we need a write function. */
    NULL  
    /* The read function for the file. Irrelevant, 
     * because we put it in the inode structure above */
  }; 



/* Module initialization and cleanup ******************* */

/* Initialize the module - register the proc file */
int init_module()
{
  /* Success if proc_register[_dynamic] is a success, 
   * failure otherwise */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  /* In version 2.2, proc_register assign a dynamic 
   * inode number automatically if it is zero in the 
   * structure , so there's no more need for 
   * proc_register_dynamic
   */
  return proc_register(&proc_root, &Our_Proc_File);
#else
  return proc_register_dynamic(&proc_root, &Our_Proc_File);
#endif
}


/* Cleanup - unregister our file from /proc */
void cleanup_module()
{
  proc_unregister(&proc_root, Our_Proc_File.low_ino);
}  

注释

[1]

两者之间的区别在于文件操作处理文件本身,而 inode 操作处理引用文件的方式,例如创建指向它的链接。