设备文件应该代表物理设备。大多数物理设备既用于输出也用于输入,因此内核中的设备驱动程序必须具有某种机制,以从进程获取要发送到设备的输出。这是通过打开设备文件以进行输出并写入它来完成的,就像写入文件一样。在以下示例中,这是通过以下方式实现的:device_write.
这并不总是足够。想象一下,你有一个连接到调制解调器的串行端口(即使你有一个内置调制解调器,从 CPU 的角度来看,它仍然被实现为连接到调制解调器的串行端口,所以你不必太费力地想象)。自然的做法是使用设备文件向调制解调器写入内容(调制解调器命令或要通过电话线发送的数据)并从调制解调器读取内容(命令的响应或通过电话线接收的数据)。然而,当您需要与串行端口本身通信时,例如发送数据发送和接收的速率时,这留下了一个悬而未决的问题。
在 Unix 中的答案是使用一个名为ioctl(Input Output ConTroL 的缩写)。每个设备都可以有自己的ioctl命令,可以被读取ioctl(从进程向内核发送信息),写入ioctl(向进程返回信息),[1] 两者或都不需要。 这个ioctl函数被调用时带有三个参数:相应设备文件的文件描述符、ioctl 号和一个参数,该参数的类型为 long,因此你可以使用强制类型转换来传递任何内容。 [2]
ioctl 号编码了主设备号、ioctl 的类型、命令和参数的类型。这个 ioctl 号通常由宏调用创建 (_IO, _IOR, _IOW或_IOWR--- 取决于类型)在一个头文件中。然后,程序和内核模块都应该包含这个头文件,程序将使用ioctl(以便它们可以生成适当的ioctl)和内核模块(以便它可以理解它)。在下面的示例中,头文件是chardev.h而使用它的程序是ioctl.c.
如果你想在你的内核模块中使用ioctl,最好收到一个官方的ioctl分配,这样如果你不小心得到了别人的ioctl,或者如果他们得到了你的,你就会知道有什么不对劲。有关更多信息,请查阅内核源代码树,地址为Documentation/ioctl-number.txt.
示例 7-1. chardev.c
/* chardev.c - Create an input/output character device */ #include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module */ /* Deal with CONFIG_MODVERSIONS */ #if CONFIG_MODVERSIONS==1 #define MODVERSIONS #include <linux/modversions.h> #endif /* For character devices */ /* The character device definitions are here */ #include <linux/fs.h> /* A wrapper which does next to nothing at * at present, but may help for compatibility * with future versions of Linux */ #include <linux/wrapper.h> /* Our own ioctl numbers */ #include "chardev.h" /* In 2.2.3 /usr/include/linux/version.h includes a * macro for this, but 2.0.35 doesn't - so I add it * here if necessary. */ #ifndef KERNEL_VERSION #define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c)) #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) #include <asm/uaccess.h> /* for get_user and put_user */ #endif #define SUCCESS 0 /* Device Declarations ******************************** */ /* The name for our device, as it will appear in * /proc/devices */ #define DEVICE_NAME "char_dev" /* The maximum length of the message for the device */ #define BUF_LEN 80 /* Is the device open right now? Used to prevent * concurent access into the same device */ static int Device_Open = 0; /* The message the device will give when asked */ static char Message[BUF_LEN]; /* How far did the process reading the message get? * Useful if the message is larger than the size of the * buffer we get to fill in device_read. */ static char *Message_Ptr; /* This function is called whenever a process attempts * to open the device file */ static int device_open(struct inode *inode, struct file *file) { #ifdef DEBUG printk ("device_open(%p)\n", file); #endif /* We don't want to talk to two processes at the * same time */ if (Device_Open) return -EBUSY; /* If this was a process, we would have had to be * more careful here, because one process might have * checked Device_Open right before the other one * tried to increment it. However, we're in the * kernel, so we're protected against context switches. * * This is NOT the right attitude to take, because we * might be running on an SMP box, but we'll deal with * SMP in a later chapter. */ Device_Open++; /* Initialize the message */ Message_Ptr = Message; MOD_INC_USE_COUNT; return SUCCESS; } /* This function is called when a process closes the * device file. It doesn't have a return value because * it cannot fail. Regardless of what else happens, you * should always be able to close a device (in 2.0, a 2.2 * device file could be impossible to close). */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) static int device_release(struct inode *inode, struct file *file) #else static void device_release(struct inode *inode, struct file *file) #endif { #ifdef DEBUG printk ("device_release(%p,%p)\n", inode, file); #endif /* We're now ready for our next caller */ Device_Open --; MOD_DEC_USE_COUNT; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) return 0; #endif } /* This function is called whenever a process which * has already opened the device file attempts to * read from it. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) static ssize_t device_read( struct file *file, char *buffer, /* The buffer to fill with the data */ size_t length, /* The length of the buffer */ loff_t *offset) /* offset to the file */ #else static int device_read( struct inode *inode, struct file *file, char *buffer, /* The buffer to fill with the data */ int length) /* The length of the buffer * (mustn't write beyond that!) */ #endif { /* Number of bytes actually written to the buffer */ int bytes_read = 0; #ifdef DEBUG printk("device_read(%p,%p,%d)\n", file, buffer, length); #endif /* If we're at the end of the message, return 0 * (which signifies end of file) */ if (*Message_Ptr == 0) return 0; /* Actually put the data into the buffer */ while (length && *Message_Ptr) { /* Because the buffer is in the user data segment, * not the kernel data segment, assignment wouldn't * work. Instead, we have to use put_user which * copies data from the kernel data segment to the * user data segment. */ put_user(*(Message_Ptr++), buffer++); length --; bytes_read ++; } #ifdef DEBUG printk ("Read %d bytes, %d left\n", bytes_read, length); #endif /* Read functions are supposed to return the number * of bytes actually inserted into the buffer */ return bytes_read; } /* This function is called when somebody tries to * write into our device file. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) static ssize_t device_write(struct file *file, const char *buffer, size_t length, loff_t *offset) #else static int device_write(struct inode *inode, struct file *file, const char *buffer, int length) #endif { int i; #ifdef DEBUG printk ("device_write(%p,%s,%d)", file, buffer, length); #endif for(i=0; i<length && i<BUF_LEN; i++) #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) get_user(Message[i], buffer+i); #else Message[i] = get_user(buffer+i); #endif Message_Ptr = Message; /* Again, return the number of input characters used */ return i; } /* This function is called whenever a process tries to * do an ioctl on our device file. We get two extra * parameters (additional to the inode and file * structures, which all device functions get): the number * of the ioctl called and the parameter given to the * ioctl function. * * If the ioctl is write or read/write (meaning output * is returned to the calling process), the ioctl call * returns the output of this function. */ int device_ioctl( struct inode *inode, struct file *file, unsigned int ioctl_num,/* The number of the ioctl */ unsigned long ioctl_param) /* The parameter to it */ { int i; char *temp; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) char ch; #endif /* Switch according to the ioctl called */ switch (ioctl_num) { case IOCTL_SET_MSG: /* Receive a pointer to a message (in user space) * and set that to be the device's message. */ /* Get the parameter given to ioctl by the process */ temp = (char *) ioctl_param; /* Find the length of the message */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) get_user(ch, temp); for (i=0; ch && i<BUF_LEN; i++, temp++) get_user(ch, temp); #else for (i=0; get_user(temp) && i<BUF_LEN; i++, temp++) ; #endif /* Don't reinvent the wheel - call device_write */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) device_write(file, (char *) ioctl_param, i, 0); #else device_write(inode, file, (char *) ioctl_param, i); #endif break; case IOCTL_GET_MSG: /* Give the current message to the calling * process - the parameter we got is a pointer, * fill it. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) i = device_read(file, (char *) ioctl_param, 99, 0); #else i = device_read(inode, file, (char *) ioctl_param, 99); #endif /* Warning - we assume here the buffer length is * 100. If it's less than that we might overflow * the buffer, causing the process to core dump. * * The reason we only allow up to 99 characters is * that the NULL which terminates the string also * needs room. */ /* Put a zero at the end of the buffer, so it * will be properly terminated */ put_user('\0', (char *) ioctl_param+i); break; case IOCTL_GET_NTH_BYTE: /* This ioctl is both input (ioctl_param) and * output (the return value of this function) */ return Message[ioctl_param]; break; } return SUCCESS; } /* Module Declarations *************************** */ /* This structure will hold the functions to be called * when a process does something to the device we * created. Since a pointer to this structure is kept in * the devices table, it can't be local to * init_module. NULL is for unimplemented functions. */ struct file_operations Fops = { NULL, /* seek */ device_read, device_write, NULL, /* readdir */ NULL, /* select */ device_ioctl, /* ioctl */ NULL, /* mmap */ device_open, #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) NULL, /* flush */ #endif device_release /* a.k.a. close */ }; /* Initialize the module - Register the character device */ int init_module() { int ret_val; /* Register the character device (atleast try) */ ret_val = module_register_chrdev(MAJOR_NUM, DEVICE_NAME, &Fops); /* Negative values signify an error */ if (ret_val < 0) { printk ("%s failed with %d\n", "Sorry, registering the character device ", ret_val); return ret_val; } printk ("%s The major device number is %d.\n", "Registeration is a success", MAJOR_NUM); printk ("If you want to talk to the device driver,\n"); printk ("you'll have to create a device file. \n"); printk ("We suggest you use:\n"); printk ("mknod %s c %d 0\n", DEVICE_FILE_NAME, MAJOR_NUM); printk ("The device file name is important, because\n"); printk ("the ioctl program assumes that's the\n"); printk ("file you'll use.\n"); return 0; } /* Cleanup - unregister the appropriate file from /proc */ void cleanup_module() { int ret; /* Unregister the device */ ret = module_unregister_chrdev(MAJOR_NUM, DEVICE_NAME); /* If there's an error, report it */ if (ret < 0) printk("Error in module_unregister_chrdev: %d\n", ret); }
示例 7-2. chardev.h
/* chardev.h - the header file with the ioctl definitions. * * The declarations here have to be in a header file, because * they need to be known both to the kernel module * (in chardev.c) and the process calling ioctl (ioctl.c) */ #ifndef CHARDEV_H #define CHARDEV_H #include <linux/ioctl.h> /* The major device number. We can't rely on dynamic * registration any more, because ioctls need to know * it. */ #define MAJOR_NUM 100 /* Set the message of the device driver */ #define IOCTL_SET_MSG _IOR(MAJOR_NUM, 0, char *) /* _IOR means that we're creating an ioctl command * number for passing information from a user process * to the kernel module. * * The first arguments, MAJOR_NUM, is the major device * number we're using. * * The second argument is the number of the command * (there could be several with different meanings). * * The third argument is the type we want to get from * the process to the kernel. */ /* Get the message of the device driver */ #define IOCTL_GET_MSG _IOR(MAJOR_NUM, 1, char *) /* This IOCTL is used for output, to get the message * of the device driver. However, we still need the * buffer to place the message in to be input, * as it is allocated by the process. */ /* Get the n'th byte of the message */ #define IOCTL_GET_NTH_BYTE _IOWR(MAJOR_NUM, 2, int) /* The IOCTL is used for both input and output. It * receives from the user a number, n, and returns * Message[n]. */ /* The name of the device file */ #define DEVICE_FILE_NAME "char_dev" #endif
示例 7-3. ioctl.c
/* ioctl.c - the process to use ioctl's to control the kernel module * * Until now we could have used cat for input and output. But now * we need to do ioctl's, which require writing our own process. */ /* device specifics, such as ioctl numbers and the * major device file. */ #include "chardev.h" #include <fcntl.h> /* open */ #include <unistd.h> /* exit */ #include <sys/ioctl.h> /* ioctl */ /* Functions for the ioctl calls */ ioctl_set_msg(int file_desc, char *message) { int ret_val; ret_val = ioctl(file_desc, IOCTL_SET_MSG, message); if (ret_val < 0) { printf ("ioctl_set_msg failed:%d\n", ret_val); exit(-1); } } ioctl_get_msg(int file_desc) { int ret_val; char message[100]; /* Warning - this is dangerous because we don't tell * the kernel how far it's allowed to write, so it * might overflow the buffer. In a real production * program, we would have used two ioctls - one to tell * the kernel the buffer length and another to give * it the buffer to fill */ ret_val = ioctl(file_desc, IOCTL_GET_MSG, message); if (ret_val < 0) { printf ("ioctl_get_msg failed:%d\n", ret_val); exit(-1); } printf("get_msg message:%s\n", message); } ioctl_get_nth_byte(int file_desc) { int i; char c; printf("get_nth_byte message:"); i = 0; while (c != 0) { c = ioctl(file_desc, IOCTL_GET_NTH_BYTE, i++); if (c < 0) { printf( "ioctl_get_nth_byte failed at the %d'th byte:\n", i); exit(-1); } putchar(c); } putchar('\n'); } /* Main - Call the ioctl functions */ main() { int file_desc, ret_val; char *msg = "Message passed by ioctl\n"; file_desc = open(DEVICE_FILE_NAME, 0); if (file_desc < 0) { printf ("Can't open device file: %s\n", DEVICE_FILE_NAME); exit(-1); } ioctl_get_nth_byte(file_desc); ioctl_get_msg(file_desc); ioctl_set_msg(file_desc, msg); close(file_desc); }
[1] | 请注意,这里读取和写入的角色再次颠倒了,所以在ioctl中,读取是向内核发送信息,写入是从内核接收信息。 |
[2] | 这并不完全准确。例如,你不能通过 ioctl 传递一个结构体 --- 但是你可以传递一个指向结构体的指针。 |